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Abstract

Due to their inherent dissipation and stability, the MacCormack scheme and its variants

have been widely used in the computation of unsteady flow and acoustic problems.

However, these schemes require many points per wavelength in order to propagate waves

with a reasonable amount of accuracy. In this work, the linear wave propagation

characteristics of MacCormack-type schemes are investigated, and methods for greatly

improving their performance are described and demonstrated.

Introduction

In the field of computational aeroacoustics, numerical schemes are expected to propagate

waves accurately for long distances over long periods of time. In order to accomplish this

goal, a certain number of spatial points are required per wavelength to model each wave,

and a certain time step is required in order to model the wave's movement in time. It is

desirable from a computational standpoint to reduce the number of points required per

wavelength and increase the size of the allowable time step.



Onepopularandwell-testedmethodusesamodificationof theMacCormackscheme[1],

which is secondorderaccuratein time andfourthorderaccuratein space.This extension

of theMacCorrnackschemeis known asthe2-4 scheme,andwasdescribedby Gottlieb

and Turkel [2]. This schemehasbeenusedsuccessfullyon a wide rangeof fluid and

aeroacousticsproblems[3-15]. Sankar,Reddy,andHariharanhaveevaluatedthis scheme

for aeroacousticsapplications[16]. It hasbeenextendedto sixth- orderspatialaccuracy

byBayliss, et. al. (2-6 scheme)[17].

In this paper, theseMacCormack-type schemeswill be investigated in detail, and

extensionsto high-orderaccuracywill bedeveloped.A testproblemis usedto quantifythe

performanceof thevariousschemes.Theseschemeshavebeenvalidatedon thereal-world

problemof noiseradiatedby asupersonicjet usingthelinearizedEulerequations.

Test Equation and Numeric_ll Formulation

For comparative purposes, a simple hyperbolic equation is solved:

8U 8U
- c_ (1)

8t 8x

The harmonic solution to this equation is:

U(x,t) = e i(_-_) (2)

where k is the wavenumber and 6o is the frequency. Here,

w = ck. (3)

In order to numerically solve Eq. (1), the equation must be discretized in time and space.



Thediscretizedspatialderivativesmustmodelaccuratelythederivative of the waveform:

3U 1 M

= ike _(_-_) = _ j'_ajUj____N (4)

where the coefficients aj are the coefficients used in taking the spatial derivative.

Since:

(5)

a numerical wavenumber can be defined, following Tam and Webb's work [18]:

M

k* = -i _ ajeikj.t_x

AXj=_N

(6)

In this way, Eq. (4) becomes:

3U ik.ei(_-_) (7)
&

As the numerical scheme marches in time, the time integration must also model accurately

the evolution of the waveform. From before:

8U c_U

at Ox

= _ieke i(_-°_) (8)

= _i09ei(kx-_)

Integrating Eq. (8) gives:

U(x,t + At) = e-i(_)e _(_-_)

= U(x, t)e -i(_t)

(9)

One popular method for numerical time integration is the Runge-Kutta scheme. A generic



six-stage Runge-Kutta method has this form:

u _"=U(x,t)

OU (_)

U (2) = U(x,t)- a2eAt oxx

cgU (2)

U (3) = U(x,t)- a3cAt oax

_U C3)

U <4_= U(x,t)- a4cAt oax

OU(4_

U (5) = U(x,t)- ascAt onx

3U(5_

U (6) = U(x,t)- ascAt- 3x

F OU(_) c)U _2_ c)U _3) q

U(x,t + At)= U(x,t)-cAt I I
I c?U (4_ 3U (_ c)U (6_I

+ +

(10)

Using the coefficients from Table I for the sixth-order accurate Runge-Kutta scheme and

using Eq. (7) to define the numerical wavenumber, Eq. (10) becomes:

U(x,t + At)=U(x,t)

1 - ick'At +
2 6

(-ick*At)4 (-ick*At)5 (-ick*At)6
_ +

24 120 720

(11)

= U(x, t)e -i_'_

Comparing Eq. (11) to Eq. (9), we can define the numerical frequency co* as:

• -iln[U(x,t+At) 1

0'=_-/L W((x_ j
(12)



Descri_otion of the MacCormack Scheme

In the MacCormack scheme, integration in time is accomplished by applying an operator to

the solution at the last time level. The time integration method used in the existing schemes

is a second-order accurate Runge-Kutta method:

U (1) = U(x,t)

9U (_)

U (2) = U(x,t) - cAt---_

At [ SU (1) 8U(2) 1U(x,t+ tl=

(13)

In the MacCormack scheme, one-sided differences are used in order to add dissipation to

stabilize the scheme. The one-sided differences are defined in this way:

M

8U f = _ ajUi+J
-_ i j=-n

= E-ajUi_j

o_x j=__

(14)

such that the underlying central difference is recovered when the forward and backward

_U C M

1

Aj = _(aj +a_j)

differences are added together:

(15)

For example, in the original MacCormack scheme, forward and backward differences are



definedasfirst-orderaccuratedifferences:

ou_=_(-u,+u,.1)
3xi

ov o'v o(_)
= --+_-_+Ox

I Iiox = u, -u,_l)

OU . 32U O( zXx2o_ _--_-+ )

(16)

(17)

It is seen that adding (16) and (17) together recovers a second-order accurate central

difference. In all of the existing MacCormack-type schemes, the one-sided differences are

first-order accurate, with a dissipative leading error.

The forward and backward differences are alternately used in the time-stepping routine.

For example, Eq. (13) becomes:

U (') = U(x,t)

o7U( D F

U (2) =U(x,t)-cAt----_

U(x,t+St)=U(x,t)-c At +_
2

(18)

6



An_lly$i$ 9f the MacCormack Scheme

Using Eq. (6), the numerical wavenumbers can be found for the one-sided differences as

well as the underlying central difference:

. -i( ,_ 1)(k*+i6)
k F = Ax,e - =

k s" = --_-i(-e-ik_' + 1)= (k* - i5)

kc = ___.-i (eik_ _ e_ik_ )= k"

(19)

Notice that the real part of the numerical wavenumber is identical to that of the underlying

central difference for all differences, and that the imaginary parts are due to the form of the

one-sided differences and are equal and opposite.

Putting these definitions into the time integation method gives:

U <') = U(x,t)

U <2)= U(x, t) - icAtkF U<1)

=(1-icAtkF)U(x,t)

(20)

Then:

U(x,t + At)= U(x,t)- ic2 [k;U(1) + k'_U (2)]

= U(x,t)- icA-_[kFU(X,')+ k;(1-icAtk F )U(x,,)]

= tcv_ef +k'B) 2 (kBkF U(x,t)

=[1-icAtk*_ (-i2At)2((k')2+SZ);U(x,t)

(21)
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UsingEq. (13),it is clearthatthenumericalfrequencyfor theMacCormackschemeis:

to = In 1- icAtk" + 2 + 52 (22)

From this development, three contributions to the error are present in the MacCormack

scheme: the error in dispersion from the spatial central difference, the error in dissipation

from the one-sided spatial differences, and the error in both dispersion and dissipation from

the time integration method itself.

Hi_,her Order Runge-Kutta Schemes for MacCormack-tvoe Methods

In order to investigate the effect of the time integration scheme on the dispersion and

dissipation error, several high-order Runge-Kutta methods were constructed for

MacCormack-type schemes. Eq. (10) gives the generic form of the Runge-Kutta schemes.

For example, the two-stage, second-order accurate method given in Eq. (13) would have

the coefficients given for the RK2 scheme.

It should be noted that, in order to achieve the desired spatial accuracy using a

MacCormack-type scheme, the sum of the odd [Ys (1,3,5) must add up to equal the sum of

the even [Ys (2,4,6). In this way, the central difference will be obtained from the sum of

the forward and backward differences. Similar constraints are used for the odd time

derivatives to insure that the one-sided differences sum properly.

Table 1 gives the coefficients for Runge-Kutta 2nd, 4th, and 6th order accurate methods, as

well as the coefficients for Hu, et. al.'s optimized 4-6 Runge-Kutta scheme [19].



RK2

1

0

0

0
(X5

0

RK4

1/2

1/2

1

0

or6 0

[_1 1/2 1/6

1/2 1/3
_2

133 o

134 o

0
_5

_6 0 0

cl 1 1

c2 1/2 1/2

0

0

0

0

c3

c4

c5

c6

RK6

1/3

1/3

RK4-6 Step 1

1/2

1/2

3/8 1

3/8 0

RK4-6 Step2

.353323

.353323

.240823

.240823

64/21 0 .341148

-43/240 1/6 -.766927

1/3

1/6 2/5

0 4/15

17/240 1/3

33/80 1/3

7/240

1/2

1/6

1/24

1/6

1/24

1/6

0

0

1/2

1/6

1/24

0

0

0 1/120

0 1/720

-.519328

.147469

-.140084

1.11946

1.15941

1/2

1/6

1/24

0.0162098

0.00286365

Table I: Coefficients for Runge-Kutta Time Stepping Schemes.

Following the development given for the 2-4 scheme, we find that a sixth order accurate



RungeKutta methodgivesthisresult:

(.O"=-iln
At

1- icAtk" + 2

6

120 720

(23)

Again, it is seen that the errors arise from the dispersion error in the central difference and

the dissipation error in the one-sided differences.

From Eq. (23), it can be seen that the numerical frequency for a MacCormack-type scheme

may be written generally as:

(.0" = -Zln 1+

*
(24)

where S is the number of stages in the Runge-Kutta scheme and the cl's are the leading

coefficients in the time integration, given in Table I.

lmprgved _entrol Differences

Various central differences were investigated during this work for use with MacCormack-

type schemes. Fourth, sixth, and eighth order central differences were investigated, as

well as the fourth-order accurate Dispersion Relation Preserving (DRP) scheme of Tam and

Webb.
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Theerrorin thedispersionrelationswasdefinedas:

Error = k*Ax - kAx (25)

The dispersion errors are plotted as a function of wavenumber kAx in Figures 1 and 2. It

can be seen that higher orders of accuracy result in lower errors, as would be expected.

However, lower order differences can be optimized as shown by Tam and Webb to provide

better performance for a _ven level of acceptable error, illustrated in Figure 2.

Improved One-Sided Differences

1. Higher-Order Accurate One-Sided Differences

Using the basic methodology of the MacCormack method, improved accuracy can be

attained by altering the one-sided differences to have higher accuracy while still adding up

to a more accurate central difference. For a fourth-order accurate central difference, two

schemes can be constructed:

The first scheme is the normal 4/2 scheme, which is fourth order accurate in space and has

second-order dissipation in each step. The next scheme is a 4/4 scheme, which is fourth

order accurate in space and has fourth-order dissipation in each step. This higher-order

accuracy is achieved by adding one point to each of the one-sided differences, as shown in

Table II.

Notice how both schemes add up to the identical 4th order accurate central difference. The

difference in the two schemes is in the leading error terms of the one-sided differences,

which affects the inherent dissipation of the scheme. The effect of this change is to lower

the inherent dissipation at a given wavenumber, as shown in Figure 3. This gives the

11



a_ 2 a_l

2/2 [1]

4/2 [2]

0 0

0

6/2 [17]

8/2

4/4

6/4

DRP/4

DRP/opt

8/4

6/6

8/6

0

0

0

0

0

0

0

3

60Ax

18

420Ax

0

0

-2

6Ax

-.3766

Ax

-.30874

Ax

-120

420Ax

-30

60Ax

-192

420Ax

ao

-1

Ax

-7

6Ax

-533

420Ax

-3

6Ax

-19

30Ax

-.4968

Ax

-.6326

Ax

-293

420Ax

-20

60Ax

-185

420Ax

al

1

Ax

8

6Ax

45

30Ax

672

420Ax

6

6Ax

36

30Ax

1.1651

Ax

L2330

Ax

552

420Ax

60

60Ax

480

420Ax

ch

-9

30Ax

-168

420Ax

-1

6Ax

-9

30Ax

-.3334

Ax

-.3334

Ax

-168

420Ax

-15

60Ax

-150

420Ax

Ch

0

0

1

30Ax

32

420Ax

1

30Ax

.04168

Ax

.04168

Ax

32

420Ax

2

60Ax

32

420Ax

a4

0

0

0

-3

420Ax

0

0

0

420Ax

Table II: Coefficients for MacCormack-Type Schemes

scheme a wider range of wavenumbers that it can accurately resolve, and thus requires less

points per wavelength.
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Using this basicmethodology,families of 6th and 8th order accurateschemescan be

constructed.In thesehigherorderschemes,it is possibleto addanotherpoint to theone-

sideddifferencesto attain6thorderdissipation.Theseresultsaregivenin TableII.

2. Optimization of the Split Operators

The Tam and Webb optimization technique may be used on the one-sided differences to

improve their performance at wavenumbers of interest. The procedure is as follows:

The central difference that the one-sided differences must add up to is fixed:

OU c = IAaUi-3+A-2Ui-2+A-1Ui-I+A°Ui 1
; L+AIU,.I + &Ui÷2 + &g,÷3

(26)

This, in turn, determines some of the coefficients of the one-sided difference:

o3UI r = 2A3Ui+ 3 + 2A2Ui+2 + axU,+l + aoU i + a_lU,_l
,gx I_

(27)

There are two conditions that are known for the three unknowns:

2.43 +2.42 +a 1 +ao +a_x = 0

al- a_l = 2A1

(28)

For the third condition, we can set a range to minimize the dissipation of the one-sided

differences. For this work, the dissipation was minimized at 8 points per wavelength and

higher. To do this, the following equation is minimized (following Tam and Webb's

procedure):

lr 2

E= Re aje _j'_ d_¢

__ LJ=-I -II
4

(29)
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TheconditionthatE is a minimumis:

OF_,
- 0 (30)

_-1

This gives the condition required, and the coefficients are solved from the resulting linear

system of equations. Figure 3 illustrates the effect of optimization on the inherent

dissipation of the scheme. Notice that there is a price for this optimization: the lower

wavenumbers (more points per wavelength) have slightly increased dissipation as

compared to the oriNnal scheme.

The DRP schemes shown are given in Table II.

3. Dissipative Errors of the One-Sided Differences

Figure 3 shows the dissipative errors in the one-sided differences for various

MacCormack-type schemes. It can be seen that, in general, the dissipative performance of

schemes with 2rid order dissipation (4/2 and 6/2, for example) are similar. It can also be

seen that the closer the split stencil is to the central difference stencil, the less dissipation the

scheme will have (6/6, for example). It can be seen that, in general, higher-order accuracy

reduces dissipation errors at a given wavenumber. The positive effect of the DRP-style

optimization on the dissipation errors can also be seen in this figure.

Perfgrman¢¢ 9f lh¢ lmprgvCd MacCormack-tvue schemes

In this section, the total performance of each scheme will be quantified. In order to fairly

compare the schemes, the errors in dissipation and dispersion per wavelengh of travel will

be shown as functions of wavenumber and time step. In this way, the effects of both the

time and space discretization are shown.

14



In these results, the following definitions are used:

27_
PPW =

kAx

CFL = __cAt (31 )

PPW
NST = ---

CFL

Here, PPW is the number of spatial points per wavelength, CFL is the Courant number,

and NST is the number of time steps per cycle.

From Eq. (11), we see that:

U(x,t + NSTAt) = U(x,t)e -i(°_Nsr'_)

=U(x,t)(e-i(°_t)) NsT

(32)

Since the problem is periodic,

U(x,t + NSTAt) = U(x,t)

(e-i(°_t))uSr=l+Oi

(33)

and we can define the numerical solution to be:

(34)

Here, A is the amplitude per wavelength traveled and D is the dispersion error per

wavelength traveled.

Figure 4 shows the amplitude and dispersion per wavelength traveled for the previously

published MacCormack-type schemes. It is seen that there is a large amount of dissipation

inherent in these schemes, acting over a large part of the wavenumber range. Also, the

dispersion plots emphasize the low order of accuracy in time.

15



Figure 5 illustrates the effect that varying the time integration method has on the

MacCormack-type schemes. In Figure 5, the 6/4 one-sided differences are used, and

various time integration methods are employed. Notice how the variation of the errors with

increasing time step is greatly reduced with the 46 and 6 stage time integration methods.

Also, the optimized 46 time integration method is very nearly as accurate as the 6-stage, 6th

order method while requiring less work.

Figure 6 compares the 2-4/2 method with the best of the two newer methods: the 46-6/4

method and the 46-DRP/optimized method. Notice that using the DRP method can extend

the usable wavenumber range for a given amount of error significantly without requiring

any additional calculations. Also, the stability range of the newer schemes are much greater

than that of the older MacCormack-type schemes, while retaining very good accuracy.

Figures 7-9 shows the final results of this work: the actual wave propagation.

In Figure 7, a wave of 8 points per wavelength (kAx = .785) is propagated for 400 time

steps at a CFL of 0.5 (25 wavelengths of travel). Results are shown for the original 2-4/2

scheme, the 46-6/4 scheme, and the optimized 46-DRP/opt scheme. The low CFL number

is chosen due to the low stability limits of the 2-4/2 scheme.

It can be seen that the 2-4/2 scheme is the most dissipative, followed by the 46-6/4 scheme

and the 46-DRP/opt scheme. Referring to Figure 3, the magnitudes of the dissipation for

these schemes fall in the same sequence..

The dispersive error is illustrated in Figure 1. The fourth-order central difference has the

highest dispersive error, with the numerical wave trailing the actual wave. The sixth-order

central difference and the DRP central difference have about the same amount of

dispersion, with the sixth order wave trailing the actual wave, and the DRP wave leading.

Again, Figure 1 illustrates this effect.

16



Moving on to higherCFL, Figure8 showsthesameproblemwith aCFL of 1.25(8points

perwavelength,25 wavelengthsof travel,160timesteps).The2-4/2schemewasunstable

atthis largertimestep,soonly theresultsfrom theothertwo schemesareshown. It canbe

seenthat theresultsarealmostidenticalto thepreviouscalculation,which illustratesthe

largetimestepspossiblewith theoptimized46 timesteppingscheme.

Figure 9 shows the results for 6 points per wavelength (kAx = 1.05) after 33.33

wavelengthsof travel (CFL = 1.25,160timesteps).Theimprovementin bothdispersion

anddissipationof theDRPschemecanbeseencomparedto the46-6/4scheme,illustrating

thebenefitsof optimizationfor thissevereproblem.

Conclusions

In this work, the dispersive and dissipative characteristics of the existing MacCormack-type

scheme were investigated, and several ways were found to improve the accuracy of this

type of scheme. The accuracy and stability of these schemes were greatly enhanced

without much additional calculations being needed.

The MacCormack-type schemes are of great interest due to their ease of programming and

use, and inherent numerical dissipation. This work shows that this type of scheme can be

optimized to perform very well.
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Figure 4

Performance of Previous MacCormack-Type Schemes.
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Figure 6

Comparison of Accuracy of MacCormack-Type Schemes.
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Comparison of results obtained by MacCormack-type methods

(8 ppw, CFL = 0.5, 25 wavelengths of travel)
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Comparison of results obtained by MacCormack-type methods

(8 ppw, CFL = 1.25, 25 wavelengths of travel)

27



15

1

0.5

-0.5

-1 .,g f _ t z I I 1 I

2

.... 1 .... I ....

• analytic
+ 46-6/4

46-DRP/opt
l

I I I I I ' ' '

3

/

4 5 6 7
x

Figure 9

Comparison of results obtained by MacCormack-type methods
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